Editorial: Cytokines as Players of Neuronal Plasticity and Sensitivity to Environment in Healthy and Pathological Brain
نویسندگان
چکیده
In this e-Book, we collected recent evidence on the role of cytokines (including chemokines) in the interplay between environmental stimulation and central responses in both physiological and pathological conditions. The e-Book includes original studies and review articles focused on cytokine function during brain development as well as in the mature brain. Cytokines, together with neurotransmitters and hormones, are signaling molecules playing a key role in the maintenance of neuro-immune-endocrine system homeostasis. The cytokine systems (constituted by cytokines, their receptors and regulators of their activity) are expressed throughout the brain and their expression is regulated during brain development until aging. Brain cells, including neurons as well as glia cells, can release and/or be responsive to cytokines, therefore these molecules can enable communication between different cell types. Under physiological conditions, cytokines typically participate in brain development and plasticity by translating environmental into molecular signals. However, once the allostatic equilibrium is compromised, cytokine systems, if over-or chronically-activated, may participate in mediating toxic effects in the brain. Indeed, a central role for cytokines in neuropsychiatric as well as neurodegenerative disorders is now well recognized. The major source of cytokines release in the brain is microglia cells that are actively involved in adult brain homeostasis and in neural loss and synaptic maturation during development. The contribution of Pagani et al. addresses the role of fractalkine (CX3CL1) signaling in the developmental profile of morphological features and physiological properties of microglia using mice lacking the fractalkine receptor (who is expresses only in microglia within the healthy brain). Sheridan et al. investigated the role for fractalkine in synaptic plasticity showing that the levels of hippocampal fractalkine increases after a memory task and that the chemokine regulates glutamate-mediated neurotransmission tone. A comprehensive review on the role of fractalkine in regulating microglia properties, brain plasticity and behavior is provided by Paolicelli et al.. Another cytokine known to modulate memory-related processes is interferon (IFN)-γ. One of the article included in this e-book describe the effects induced by the lack of IFN-γ on memory function under basal or stressful conditions (Litteljohn et al.). This study emphasizes the importance of considering the " brain state " (healthy or disease) when the modulation of neurobehavioral processes by the cytokine systems it is evaluated.
منابع مشابه
Fractalkine regulation of microglial physiology and consequences on the brain and behavior
Neural circuits are constantly monitored and supported by the surrounding microglial cells, using finely tuned mechanisms which include both direct contact and release of soluble factors. These bidirectional interactions are not only triggered by pathological conditions as a S.O.S. response to noxious stimuli, but they rather represent an established repertoire of dynamic communication for ensu...
متن کاملP 138: Improving Neuroplasticity Through Neuroinflammation Pathways as a Therapeutic Goal in the Treatment of Autism
Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons in the brain to compensate injury and disease and to adjust their activities in response to new situations or to changes in their environment. At the other side, it is now well established that neuronal function is strongly influenced by both central ...
متن کاملP151: The Effects of Boswellia Serrate on Central Nervous System
In the process of neuronal inflammation, an increased in inflammatory cytokines (IL-1β, IL-6 and TNF-α) from immune cells (leukocytes and macrophages), brain cells (microglia, astrocytes and neurons) and in hippocampus, amygdala occurs. Raise the level of cytokines result in reduced in production of molecules that are related to plasticity, especially BDNF, IGF-1 and VEGF. Microglia ...
متن کاملEditorial: The Metabolic-Inflammatory Axis in Brain Aging and Neurodegeneration
Impairment of energy metabolism is a hallmark of brain aging and several neurodegenerative diseases, such as the Alzheimer’s disease (AD). Ageand disease-related hypometabolism is commonly associated with oxidative stress and they are both regarded as major contributors to the decline in synaptic plasticity and cognition. Neuroinflammatory changes, entailing microglial activation and elevated e...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in cellular neuroscience
دوره 9 شماره
صفحات -
تاریخ انتشار 2015